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Tunable, Dielectric-Loaded Microwave Cavities

Capable of High Q and High Filling Factor”

E. O. AMMANNY, STUDENT MEMBER, IEEE, AND R. J. MORRIS], MEMBER, IEEE

Summary—Many applications require the presence of a dielec-
tric inside a microwave resonator. This paper presents a new type of
dielectric-loaded cavity and contains a detailed analysis of its prop-
erties. The cavity consists of a waveguide of arbitrary but uniform
cross section, filled with dielectric for part of its length, with movable
shorting plungers in the guide beyond one or both ends of the di-
electric. Such a structure supports resonances at frequencies where
a particular waveguide mode is above cutoff in the dielectric, but
below cutoff outside. These resonances can have high Q’s, especially
when the cavity ends are open. Frequency tuning is possible via the
movable plungers.

The present analysis investigates resonant frequency, tuning
range, and electric and magnetic filling factors. Wall losses are cal-
culated for the particular case of a circular cross section. All results
are plotted as universal design curves. The results indicate that this
configuration is quite versatile and should be useful in numerous
applications, including microwave solid-state masers, microwave
light modulators, and the study of “ghost mode” resonances in
waveguide windows.

I. INTRODUCTION

HIS PAPER summarizes a recent study [1] of a
T new class of tunable, dielectric-loaded microwave
cavities. Two forms of cavity, shown in Fig. 1, are
treated. In both forms, a piece of homogeneous, iso-
tropic dielectric is placed in a uniform waveguide of
arbitrary cross section with movable shorting plungers
at one or both ends. The dielectric sample is machined
so that: 1) its outer surface closely fits the waveguide
walls, and 2) the two parallel faces of the dielectric are
perpendicular to the waveguide axis. In the single-ended
version, the waveguide is terminated by an electric
short at one of the parallel {faces of the dielectric.
Both cavity types support high-Q resonances at {re-
quencies which are below the cutoff {requency of the
unloaded waveguide, but above the cutoff frequency of
the dielectric-loaded waveguide. Fields corresponding to
these resonances have propagating character inside the
dielectric (i.e., oscillatory longitudinal variation), while
decaying outside. If the unloaded section is many decay
constants long, negligible fields exist at the shorting
plunger (which can then be omitted), and a high-Q
resonance is maintained. The transverse field configura-
tions are identical to those of ordinary waveguide modes.
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Frequency tuning is accomplished by moving the
shorting plunger(s). When the unloaded waveguide is
well below cutoff, the resonant fields are primarily con-
fined to the dielectric. In such cases, relatively high un-
loaded Q’s are obtained even if the plunger is of the
noncontacting variety. It is usually best to separate the
plunger from the waveguide wall by thin dielectric
spacers in order to avoid contact losses and consequent
erratic behavior of the Q with plunger motion. Since the
fields in the propagating section are much larger than
those in the cutoflf sections, the coupling structure
should be located near the dielectric (see Fig. 1).

Many advantages of these cavities are derived from
the possibility of obtaining three features simultane-
ously in one design: 1) a major fraction of the electric
or magnetic stored energy (or both) can be in the di-
electric (¢.e., high filling factors); 2) the resonant fre-
quency can be tuned over a large range, often an octave
or more; and 3) the resonance can possess a high un-
loaded Q. This type of cavity can achieve all three fea-
tures—if properly designed—without significantly com-
promising any of them.

The single-ended cavity was first used by Morris [2]
in an X-band microwave maser. To the authors’ knowl-
edge, the tunable double-ended cavity has not been
used elsewhere. The double-ended cavity with tuning
plungers removed is identical to a dielectric waveguide
window. Resonances in such a structure have been
termed “ghost modes” by Jaynes [3] and have been
analyzed by Javnes and Forrer [4], [5]. Their analysis
was motivated by the destructive effects these reso-
nances have upon windows in high-power klystrons.

These cavities appear to be useful both as tunable
and as fixed-frequency microwave resonators. They
appear particularly attractive in the areas of solid-state
microwave masers, paramagnetic resonance spectros-
copy, microwave light modulators, inicrowave meas-
urements, and as compact—yet tunable—microwave
resonators. Furthermore, the information presented
here has direct application to resonances in waveguide
windows, and may be especially useful in the develop-
ment of very high-power microwave tubes.

This paper contains a general analysis of the dielec-
tric-loaded cavity for arbitrary waveguide cross sec-
tions. Transcendental equations are obtained, whose
solutions (found on a digital computer) give the cavity
resonant frequencies. Calculations are made of the cav-
ity tuning range, and of the electric and magnetic filling
factors. For the particular case of a circular cross sec-
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Fig. 1-—Tunable, dielectric-loaded microwave cavities.

tion, unloaded Q due to wall losses is calculated for sev-
eral low order modes. All data is presented in the form
of graphs for easy use in cavity design. The information
in this paper, plus considerable additional information,
is available in a report [1] by the authors.

I1. DERIvVATION OF GENERAL CAVITY EQUATIONS

In this section we derive various quantities for the
double- and single-ended cavities of Figs. 2 and 3. The
analyses assume that the waveguide forming the cavity
is a uniform, lossless cylinder of arbitrary cross section.
All cavity regions are assumed to be filled with homo-
geneous, isotropic dielectric, the dielectrics in regions 2
and 3 being identical. The waveguide modes under con-
sideration are assumed to be propagating in region 1
while being cut off in regions 2 and 3. The relative dielec-
tric constant €, of the cutoff regions is less than €1 of
region 1, such that €1/€2=K, where K>1. Regions 2
and 3 will often contain only air, in which case K =e€,;.

A. Double-ended Cavity

Consider propagation of TE waves in the configura-
tion of Fig. 2. In terms of transverse and longitudinal
components of a particular waveguide mode, the general

field quantities for a TE traveling wave are related
by [6]

_
Ht = 4 *z; VgHz (1&)

_ Jou
Et= +’—(az><Ht)-
Y

(1b)
The subscripts { and z denote transverse and longitud-
inal components respectively. E, and H, are two-dimen-
sional vectors in the transverse plane, and the operator
V:is a transverse two-dimensional gradient. Other quan-
tities are related thus:

,7302 = ')/2 + Erkoz7 where k02 = wzﬂ,oéo.
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Fig. 3—Single-ended cavity configuration.

The parameter k,=2m/\,, where A, is the cutoff wave-
length for the particular waveguide mode; A, is deter-
mined only by the cross-sectional geometry and by the
order of transverse mode variation. The propagation
constant is y=a-+j8, and all fields are assumed to vary
with z as exp (jw! Fvz) so that the upper and lower signs
in (1) are for forward and backward waves, respectively.
In a lossless waveguide, « is either purely real or purely
imaginary, depending on whether the guide is below or
above cutofi. For the three regions in Fig. 2, we have
Region 1:

Y = jﬁ =j\/€r1k02 - kcii
Region 2 and 3:
= o= \/k62 - erﬁk()?'-

(2a)

(2b)

For a single TE waveguide mode, H. can be shown to
have the following form,
Region 1:

H, = T(x,v)[G sin Bz + H cos 52| (3a)
Region 2:

H, = C:T(x,y) sinh o[z — (L/2 + S3)] (3b)
Region 3:

H, = CsT(x,y) sinh afs + (L/2 + S3)]. (3c)

The quantity T(x, ¥) is a two-dimensional scalar func-
tion that gives the transverse dependence of H, in terms
of arbitrary transverse coordinates. 7'(x, ¥) must satisfy
the side-wall boundary conditions imposed by the cav-
ity. The arbitrary constants G and H give a measure of
the oddness and evenness of H. with respect to the
plane =0 since they multiply the sin 8z and cos 8z
terms of (3a). The expressions in (3) are legitimate solu-
tlons since they include forward and backward waves
and are as arbitrary as possible, subject to the boundary
conditions H.=0atz=(L/2-+.Ss) andat = — (L/2+S5).
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From (1) we have

oo
]k 2 (az X VtHz)’ (4)

c

Eg=

which means that by setting H,=0 at the conducting
shorts, we also do the same for E,. Substituting forward-
and backward-wave terms of (3) into (la), we obtain
for H;,

Region 1:

H, = ; VT (x, y)[G cos Bz — H sin B3] (5a)
Region 2:

H, = ko:ﬂ V.T(x, ¥)C: cosh e[z — (L/2 + S2)]  (5b)
Region 3:

m:é%mﬂ%wawmah+@ﬂ+sm.@@

We must match field expressions at the dielectric
interfaces, 2= + L/2. Because of (4), it is sufficient to
match H, and H,, since matching H, automatically
matches E;. By matching H, and H; at 2= +1/2, we
can eliminate the arbitrary constants C; and C; to
eventually obtain

8L
G <a tan —2~— -+ @ tanh aSz)

8L
=H (,8 tan—2~ tanh aS; — oz) (6a)

8L
G <a tan —?:— + 8 tanh a53>

8L
= — H(ﬂ tan—o— tanh aSs — a) . (6h)
The general characteristic equation which determines
the resonant value of w for S:5£.5; is obtained by divid-
ing (6a) by (6b).

For the case of equal plunger positions (S:=S3;=.5),
(6) is in the form

Gf(w) = Hg(w)
Gf(0) = — Hg(w).

Here the cavity resonant frequency w (contained in «
and 3), is the unknown; it must have a value such that
(6) is satisfied. The only consistent solutions are

G=0, gl =0,

8L
TE EVEN modes: §tan - = a coth aS, (7a)
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and

H=0, f() =0,

L
TE ODD modes: atan—ﬁ—z— = — GBtanhaS. (7b)

The designations EVEN and ODD refer to the sym-
metry of H, with respect to the plane z=0.

For the case of TM waves, a similar analysis leads to
expressions comparable to (6)

8L
¢4 (B + «K tan —2~ tanh «S,

8L
= H’ <‘3 tan —é—‘ el aK tanh OZSQ> (8&)

BL
Gl <,8 —]" aK tan —2— tanh 0153

8L
= — H (,6 tan~2— — aK tanh a53> . (8b)

The general TM characteristic equation which deter-
mines w is obtained by dividing (8a) by (8b). When
S:=.S5;=5, (8) gives the following characteristic equa-
tions:

L
TM EVEN modes: 8 tan%— = Ko« tanh oS  (9a)

L
TM ODD modes: Ka tan—é— = — BcothaS. (9b)

When both plungers are removed, S= o, and, conse-
quently, tanh aS=coth aS=1. Then the TE and TM
characteristic equations are (7) and (9) with tanh aS
and coth «.S replaced by unity.

B. Single-ended Cavity

The single-ended cavity (Fig. 3) is a special case of the
double-ended cavity, being obtained from it by insert-
ing a conducting plane at z=0. An analysis similar to
that just outlined could be performed to obtain char-
acteristic equations for the single-ended cavity. This can
be avoided, however, if we notice that the double-
ended cavity fields corresponding to TE ODD and TM
EVEN modes also satisfy the boundary conditions for
a single-ended cavity. Thus we may use these double-
ended cavity results for the single-ended cavity by re-
placing L/2 by L’.

The characteristic equations for the single-ended cav-
ity are

TE Waves: «atanfl’ = — gtanhaS (10a)

(10b)

f

TM Waves: 8tan8L’ = K« tanh aS.
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For the plunger removed, S= «, and the characteristic
equations are (10) with tanh «.S replaced by unity. In
all of the characteristic equations, the unknown quan-
tity is the cavity resonant frequency w which satisfies
the equations for particular values of the parameters
K, k., S,and L (or L’}). The exact solutions for w, which
are later presented in graphical form, were obtained on
a digital computer. However, the approximate behavior
of the solution can readily be seen {rom the graphical
method presented in Fig. 4. This figure illustrates solu-
tion of the single-ended cavity characteristic equation
for both TE and TM waves. We have drawn plots of
the left- and right-hand sides of (10). The resonant fre-
quencies are given by the intersections of the two curves.
The right-hand side of (10) is shown as a family of curves
corresponding to different values of the plunger position
S; the left-hand side is a somewhat modified tangent
function. It can be seen that as the plunger position is
moved from S=0 to a very large value, the resonant
frequency of a TE mode tunes down, whereas the resonant
frequency of @ TM mode tunes up. The condition S=0
corresponds to the conventional propagating, dielectric-
filled cavity. The first branch in the TM case corre-
sponds, if we take S=0, to conventional TM,,, modes,
the second branch to TM,.; modes, etc. The lowest {re-
quency solution in the TE case corresponds to TE,u
modes. Note that since TE modes tune down in fre-
quency and TM modes tune up as S is increased, there
is the possibility of a given TE mode being crossed as it
tunes down by TM modes which are tuning up. The
double-ended characteristic equations can be shown to
give tuning in a similar manner.

TM WAVES
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Fig. 4—Graphical technique for solving the chgracteristic
equations (10) of the single-ended cavity.
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C. Dielectric Losses

We here consider dielectric losses in a cavity of arbi-
trary cross section, and account for them by a quantity

QDIn
w(Total Energy Stored in Cavity)
Opr = (11)

B (Total Power Dissipated in all Dielectrics) ’

Consider the configuration of Fig. 2 with both plungers
removed, and assume that region 1 is filled with a dielec-
tric of permittivity €60 and uniform conductivity oy,
while regions 2 and 3 are both filled with a material
described by €260 and g5 The following can then be
shown:

g1 g2
U + (Us + Us)
1 We,1€p WE,0€)
Opr Ur

where Ui, U,, and Us are the electric energies stored in
regions 1, 2, and 3, and Uy = U+ Us+ Us. We recognize
o1/wen€e and ag/wes€0 as being the loss tangents, tan &
and tan §,, of the two dielectric materials. We therefore
have

= Us sy (1 -2 12
—(tanal)?]‘;—k(tan 2)< ——U—> (12)

DL T

The ratio U;/ Uy is the ratio of electric energy in region
1 to the total electric energy. Plots for thisratio are given
in Fig. 7.

111. CirRcULAR CROSS-SECTIONAL CAVITITIES

A case of considerable interest is a cavity with circular
cross section. In their report [1], the authors have pre-
sented complete expressions for the fields in double- and
single-ended circular cavities with plungers removed.
Also presented there are expressions for the unloaded Q
due to wall losses, which are given below.

A. Wall Losses

The unloaded Q due to losses in the cavity walls—
denoted by Qw; here—was calculated for double- and
single-ended cavities of circular cross section, assuming
that the plungers were removed. The results of this sec-
tion can be used in conjunction with those for dielectric
losses, of Section 11-C, to obtain an exact value for the
net unloaded Q,

1/0 = 1/Qwr + 1/0p1. (13)
The definition of Qwy is
wo(Total Energy Stored in Cavity)
Qwr o (14

" Total Power Dissipated in Cavity Walls

Using the field equations presented in the report 1],
the total stored energy and dissipated power were found
by performing appropriate integrations over the cavity
volume and surfaces. A normalized form [7] of Qws
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was used, namely Qw.8/M. The & refers to skin depth,
while A is wavelength in the dielectric of region 1.

For the double-ended cavity, stored energy is present
in regions 1, 2, and 3, while power is dissipated in the
sidewalls of the same regions. Because both plungers
are removed, there are no end-wall losses. The expres-
sions for Qwz8/\ were found to be:

a) TE EVEN modes (TE 1, TEps TEms, - - )
o (v ) o]« [ o]
M K gl:kcL—i—%csinBL] ( ! ) (g) ( cL——smﬁL) I:—(l—l—cosBL):I [1 + (nm )2(%)2]

b) TE ODD modes (TEs, TEjms, TEims, © - - )
o g (verl ) g [kL———sm ﬁL] [—(1 — cos {BL):I% »

o e (1) () T A EAY O]

c) TM EVEN modes (TM 0, TM s, TM g, - -+ )
and TM ODD modes (TM 1, TM s, TM s, - - - )

Owid  7im < _ ko>
=" — . 17
. o Ve 3 (17)

For the single-ended cavity, energy is stored in regions
1 and 2. Power dissipation occurs in the sidewalls of re-
gions 1 and 2, and in addition, in the end wall which
bounds region 1. For this reason, unlike other quantities
previously discussed, Qw18/\; expressions for the single-
ended cavity are not derivable from the double-ended
cavity results. Separate expressions were derived and
are giveu below. As before, it is assumed that the tuning

plunger is removed.
a) TE modes

3 . ke ,
(rom’® — 1%) (\/; —k—0> 31{ I:chL’ _ ke sin Z,BL':I + I:— (1 — cos 28L ):I §
Qwzd _ ke B a (18)

2 2
M K g [chL’ _Fogn ZﬁL':I + ( ! ) (3) [chL' + o 2,8L':|
8 (470 ke B

+ I:% (1 — cos ZBL,)] [1 + < rzi'

) (5 ]+ (2) (-)f
b) TM modes

Bo ke
I:ZkEL' + i sin 28L' + — (1 -+ cos ZBL’):I
Owid _ Tim _ ko 8
_k 2 \/frl k : (19)
' " [chL’ g sin 2L 4 (1 + cos 28L) + 2r “":l

In the above equations, #;, is the mth zero of J;(x),
and 7z, is the mth zero of J,’(x). In the following section,
graphs are plotted showing Qw 18/\; as a function of the
diameter to length ratio, D/L, for the double-ended
cavity, and as a function of D/L’ for the single-ended
cavity.
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TABLE I
EQuivALENCE BETWEEN GRAPH LABELS AND CaviTy MODES
Corresponding Corresponding
Graph Mode in Mode in
Label Double-Ended Single-Ended
Cavity Cavity
TE EVEN, branch 1 TEun —
TM EVEN, branch 1 TM 4o TM 0
TE ODD, branch 1 TE 42 TE u
TM ODD, branch 1 TMu —
TE EVEN, branch 2 Euws —
TM EVEN, branch 2 TM 0 TMyu
TE ODD, branch 2 TE o wn2
TM ODD, branch 2 TM 43 —
TABLE II

InsTRUCTIONS FOR USING GrRAPHS TO DETERMINE PROPERTIES OF SINGLE-ENDED AND DoUBLE-ENDED CAVITIES

Figure Numbers

Use of the Graph for
Double-Ended Cavity

Single-Ended Cavity

5(a), 5(d), 5(e), 5(h), 6(a), 6(d), 6(e), 6(h), 7(a), 7(d), 7(e), 7(h), 8(a), 8(d),

8(e), 8(h), 9(b), 9(d), 9(f), 9(h), 10(a), 10(b)

5(b), 3(c), 5(£), 5(g), 6(h), 6(c), 6(f), 6(g), 7(b), 7(c), 7(1), 7(g), &(b), 8(c),

3(f), 8(g)
9(a), 9(c), 9(e), Hg)
10(c), 10(d)

Use directly —

Use directly Change label of abscissa to 1/2k.L’

Use directly

Use directly Change label of abscissa to D/2L’

IV. INTERPRETATION AND DiscUSSION OF GRAPHS

Much of the cavity information is contained in the
graphs presented in this section. These graphs are solu-
tions to and plots of the equations presented earlier;
thev show the following quantities:

1) plunger-out resonant frequency vs 1/k.L
2) cavity tuning range vs 1/k.L

3) electric filling factor vs 1/k.L

4) magnetic filling factor vs 1/k.L

5) QWL5,/')\1 Vs D/L

6) cavity tuning range vs D/L.

The graphs which were plotted vs 1/k.L apply to a cav-
ity of arbitrary cross section, while the graphs plotted vs
D/L are for a cavity of circular cross section. Each
graph contains several curves, with each curve corre-
sponding to a different value of the parameter K.

So that a great variety of data could be presented in
the space available, the graphs are shown on a small
scale. However, in the authors’ report [1], the graphs
presented here, and others as well, are displayed in a
scale large enough that data can be read from them with
two- and three-figure accuracy.

2. Use of the Graphs

As seen in Section 11, equations for the single-ended
cavity are easily obtained {rom double-ended equations.
Correspondingly, one set of graphs suffices for both the
single- and double-ended cases. The sole exception to this
is in the calculation and plotting of Qw18/A;, where
separate results are obtained for the two cases.

We now state how the graphs may be used for single-
and double-ended cavitities. The equivalence between
the graph label and the corresponding mode in a single-
or double-ended cavity is shown in Table I.

Table II states how the graphs may be used either for
single- or double-ended cavities.

B. Discussion of Graphical Results

1) Plunger-Out Resonant Frequency: Fig. 5 contains
graphs showing normalized plunger-out resonant fre-
quency vs 1/k.L. We note the following: for small values
of 1/k.L, the value of ezko(®)/k, is 1/4/K. As
1/k.L is increased, the value of +/€.2ko( ) /k, increases
monotonically, finally reaching a value of unity for a
sufficiently large 1/k.L. This value of 1/k L {for which
Vesko( <) /b, =1 is the point where regions 2 and 3
start to propagate. It is called the critical value here,
and depends upon the particular resonant mode in ques-
tion. The critical value of 1/k.L is easily found from the
plunger-out characteristic equations, and is listed in
Table 111 for various modes.

For values of 1/k.L greater than the critical value,
regions 2 and 3 will be propagating instead of cut off, and
the determinantal equations are no longer applicable.
The graphs presented in this paper show results only
for values of 1/k.L which are less than the critical value,
since the situation of interest here occurs only when
regions 2 and 3 are cut off.

1 ky( ) is shorthand notation for ky(S,=S;= ). Similarly, ko(0)
is shorthand notation for k(Sy=3S;=0
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Fig, 5—Universal curves for cavity resonant frequency with plungers removed.
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TABLE 111
VALUES OF 1/k.L AT WHICH REGIONS 2 AND 3 BECOME PROPAGATING

Critical Value of 1/k,L

Mode

0

oC

\/r—l/'rr
VE=1/x
VEK—1/2x
VE=1/2n
vVK—1/3=
VK —1/3%

TE EVEN, branch 1
TM EVEN, branch 1
TE ODD, branch 1
TM ODD, branch 1
TE EVEN, branch 2
TM EVEN, branch 2
TE ODD, branch 2
TM ODD, branch 2

2) Cavity Tuning Range: The graphs of Fig. 6 show
the tuning range which is obtained when plungers are
moved from completely in to completely out. For TE
modes, [k4(0) —ko( =) |/ko(0) is plotted vs 1/k.L, while
for TM modes, [ko(o0)—Fo(0)]/ko(0) is plotted vs
1/k.L.

Several interesting results can be seen from Fig. 6.
For all TE modes, the tuning range increases with in-
creasing 1/k.L, reaching its maximum value at the criti-
cal value. This maximum possible value of [ko(0)
—ko(®) |/ko(0) is shown in Table IV.

For TM modes, the situation is considerably differ-
ent. The per cent tuning range increases monotonically
with increasing 1/k.L for TM EVEN, branch 1 modes,
but for all other TM modes, it peaks at some value of
1/k,L which is less than the critical value, and then
falls to zero at the critical value. The maximum possible
value of [ko(-ooi)wko(O) [/%6(0) for TM EVEN branch 1
modes is (v/K —1). The maximum value for other TM
modes is very difficult to calculate and was not found.

Finally we note that, for a given value of 1/k.L, the
tuning range of TE modes decreases while the tuning
range of TM modes increases as K is increased.

3) Fraction of Magnetic and Eleciric Stored Energy in
Region 1: Figs. 7and 8 (pp. 538-539) show, respectively,
the fraction of the total stored electric and magnetic
energies contained in region 1. These values were cal-
culated by obtaining general field expressions for a
cavity of arbitrary cross section and calculating stored
energy in the various regions. The applicable equations
are given in [1].

From Figs. 7 and 8 it is seen that is 1/k,L increases,
the electric and magnetic energies stored in region 1 de-
crease, This result we expect, for as 1/k.L is increased,
regions 2 and 3 are less strongly cut off, allowing the
cavity fields to extend {farther into these regions.

An interesting effect concerning the electric and mag-
netic stored energies should be noted. For a given 1/k,L
and K, the stored electric energy in region 1 will not
equal the stored magnetic energy in region 1. This ef-
fect is explainable in the following manner. The total
stored magnetic and electric energies in the cavity must,
of course, be equal at resonance. But in each of the cut-
off regions the stored electric and magnetic energies are
not equal because a waveguide, which is below cutoff,
has unequal electric and magnetic stored energies [8].
As a result, the electric and magnetic stored energies in

region 1 are also unequal, the inequality being most pro-
nounced when regions 2 and 3 are far below cutoff. For
TE modes, there is more electric than magnetic stored
energy in region 1, while the reverse is true for TM
modes.

4) Qwr of Circular-Cylindrical Cavity: The graphs of
Fig. 9 show Qu18/\: plotted as a function of D/L (and
D/L') for cavities of circular cross section. These
graphs are plots of (15)-(19). Also plotted on each
graph is a curve labeled “conventional cavity” which
shows Qw10/A; for the dielectric-filled cavity formed by
entirely enclosing region 1 with conducting surfaces. For
TM modes in both the single- and double-ended cases, it
can be shown that Qwz8/\: begins at a value of 7;,/27
at D/L=0, and reaches a value of 7;,/K/2x at the
critical value of D/L. For TE modes, Qw1.8/A: goes from
a value of (ri'2—10%)/2nr’ at D/L=0 to a value of
(rin"2—10~/K/27r1," at the critical value of D/L.

5) Tuning Range of Circular Cylindrical Cavity: The
graphs of Fig. 10 show cavity tuning range as a function
of D/L for various resonant modes in a cavity of circular
cross section. These graphs are similar to those of Fig. 6,
except that the abscissa 1/k.L has been converted to
D/L, and each graph corresponds to a particular mode.

V. ADVANTAGES AND USES OF THESE CAVITIES

The cavity designs described here are of potential
interest in many situations which require a dielectric-
loaded microwave cavity. We shall discuss some of the
advantages of these cavities over more conventional de-
signs, and include several possible applicatious.

A. Advantages

1) Frequency Tunability while Maintaining a Large
Filling Factor: Tt is often desirable to completely (or
nearly) fill a cavity with dielectric material. The designs
of this paper provide a method of “filling” a cavity with
dielectric, and yet allowing its frequency to be tuned.

We define magnetic filling factor here as the ratio of the
magnetic stored energy in region 1 to the total mag-
netic stored energy in the cavity, and electric filling
Jactor as the ratio of the electric stored energy in region
1 to the total electric stored energy. The electric and
magnetic filling factors will vary as the cavity frequency
is tuned, having their maximum values of unity when
both tuning plungers are all the way in, and having their
minimum values (given by Figs. 7 and 8) when both



536

IEEE

TE EVER
BRANCH |

g
<
= 06
8
o
f | KelS
— 2
9 3
= o 44 :
L+3
J 20
50
100
200
0.21
[e2] o2 05 10 2 5 10 20 50 100
17kl
(a)
0.5
04
§ -4 TE ODD
xO BRANCH ]
=
g °%
_!O
)
= o2
[o A ls
o] —— T T T T T — T
[e]¢]] 002 0.05 Ol oz 05 1 2 5 10
l/kcL
(c)
05
04
~
o 4 TE EVEN
L BRANCH 2 o
<
E 03
_xo |
L
e
= 024
ol
(o} T u t T T T T —
0ol 002 005 Ol 0.2 05 1 2 5 10
I/kcL
(e)
o255
020
§ ﬁ TE 00D
o BRANCH 2
o
~
— 0I5
T
©
¥ 1
g
2 0loq
005+
o] T T T T T T -+
ool 002 005 Ol 02 05 2 5 10
l/kcL

(g)

[k f@)-k (0)] /Ko (O)

[kyteo)-k, (0)] /k,(0}

[k (@)K (0)] /% (O)

[xgl)-k 193] /k fo)

TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

November

10
TM EVEN
BRANCH |
8._.
50
6_.
4]
20
1
.
24 .
.
| / /;::;:::::::::::::Q:::::
t‘i
o+—r ' T = ; . -
ool 002 005 0! o2 05 i 2 5 10
kgl
(b)
1.0
08
- T™ 00D
BRANCH |
oeﬂ 5
s F
1 s
04 s L
/) o ¥
R "
.
027 Y/ <
%
4 &
y
0 e . : T T : .
00l 0.2 0.05 0Ol 02 05 ! 2 5 10
17k L
(d)
05
04
TM EVEN
BRANCK 2
03
o2
01
s}
00l 002 005 Ol 02 05 I 2 5 10
17k L
()
05
04
‘{ TM ODD
BRANCH 2
OJT
02+
0.1
"
0 = —e , .
ool 002 005 Ol 2 5 i0
17kl

(h)

Fig. 6—Universal curves for cavity tuning range.
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TABLE 1V

MaxmMuM PossisLE VALUE OF TUNING
RANGE FOR TE Mobpgs

Maximum possible value of

[£0(0) — &o(0)]/Ro(0)

Mode

—

4K — 3
RS
9K — 5
—iK

16K — 7

1 —

1—-2

TE EVEN, branch 1

TE ODD, branch 1

TE EVEN, branch 2

TE ODD, branch 2

plungers are removed. If a large filling factor is wanted,
its minimum value should be kept as large as possible.

The following results are noted from Figs. 6, 7, 8, and
10. If a cavity is designed for a small tuning range (e.g. 1
to 5 per cent), both the magnetic and electric filling
factors will remain large (approximately 0.90 or more)
throughout this range. If a cavity is designed for a
moderate or large tuning range, it is often possible to
keep one of-the two filling factors large throughout the
range. As explained in Section IV, the magnetic and
electric filling factors will not, in general, be equal. A
TE mode has a larger electric than magnetic filling
factor, while the reverse is true of a TIM mode. This
should be an important consideration in choosing a
cavity mode.

2) Large Frequency Tuning with Moderate Plunger
Displacements: It is occasionally desirable to have a
microwave cavity which is tunable over large (octave or
more) frequency ranges. Large tuning ranges are pos-
sible using several conventional cavity designs, but
these designs are often limited in their usefulness due
to the large plunger displacements required. The designs
of this paper offer a method of obtaining large frequency
tuning ranges with moderate plunger displacements.
Largest tuning ranges are obtained by using TE EVEN,
branch 1, or TM EVEN, branch 1 modes, and by choos-
ing a large value of 1/k.L(>1). The length of plunger
motion required will depend upon the value of «, the
plunger-out propagation constant, which is given by
(2b). Plunger displacements of 5/a for each of the tun-
ing plungers should be adequate for complete tuning,
since at this distance the cavity fields have fallen off to
(1/e)% of their value at the dielectric boundary.

3) TE and TM Modes Tune in Opposite Diveciions:
One of the interesting results concerning the cavities of
this paper is that TE and TM modes tune in opposite
directions. As a plunger is pulled out, TE modes tune
down in {requency while TM modes tune up. This
property is useful in several ways.

It can be used as an aid in identifying resonant modes.
The direction that a mode tunes can be used to deter-
mine whether it is TE or TM, and the amount that it
tunes (used in connection with Figs. 6 or 10) can be
used to determine k.. The reader should be cautioned

that there may also be modes present which are propa-
gating in regions 2 and 3 as well as in region 1; these
modes will tune down in frequency when a plunger is
pulled out, but will not approach a limiting frequency as
the plungers are removed to infinity. A second method of
determining the identity of a mode is to trace its field
pattern within the cavity. By removing the plungers,
one has complete access to the fields in regions 2 and 3.
Using standard techniques [9], one can insert perturbing
objects into these regions and determine the strength
and direction of the field components.

The tuning properties of TE and TM modes are also
useful for separating the TEg and TMy;; modes in a
circular-cylindrical cavity. In a conventional circular
cavity, as well as a double-ended circular cavity with
both plungers pushed entirely in, the TEq, and TMiy
resonant frequencies are degenerate. I{ one wishes to use
the TE.1 mode, some means must be provided for their
separation. This separation is obtained by pulling out the
plungers of the double-ended cavity, for the TMy; mode
tunes up while the TEy: mode tunes down. If one needs
only a fixed-tuned cavity, the plungers can be pulled out
far enough to provide adequate separation of the two
modes and then locked in position.

4) Relatively Low Cavity Losses: The cavities de-
scribed here appear to be capable of quite good unloaded
Q’s. The two sources of loss are dielectric losses and wall
losses. Using these cavities, the designer has control over
the electric filling factor (see Fig. 7), and therefore has
control over the dielectric losses. Wall losses are shown
by the graphs of Fig. 9, where the solid curves give the
plunger-out value of Qw.0/A: while the dotted curves
(labeled conventional cavity) give the plunger-in value
of Qwrd/M. For plunger positions between these two
extremes, Qwz0/\ will fall somewhere between the two
curves. Notice that in all cases except for TEy;; modes,
the double- and single-ended cavities have a higher
Qwzd/M than a conventional dielectric-filled cavity.
This is because the cavity fields have decayed some-
what before they reach an end wall, resulting in reduced
end wall losses.

5) Double-ended Cavity Allows Simultaneous Control
over TWO Resonant Frequencies: One of the advantages
of the double-ended cavity is that by the use of its two



538

FRACTION OF ELEC ENERGY IN REGION 1| FRAGTION OF ELEC. ENERGY IN REGION |

FRACTION OF ELEC. ENERGY IN REGION 1|

FRACTION OF ELEC. ENERGY !N REGION |

0.8+

TE
o

JEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

EVEN
ANCH 1

(o)

08
06
04 ﬁ

02 4

o

34

08

04 A

0.02

7

TE EVEN
BRANCH 2

TE w
BRANCH |
o
— -
005 o o2

05 1

l/kCL

(A

[e}e/]

17k L

TE 00D
BRANCH 2

002 = ¥

002

005

ol

o2

(9)

5
17kl

10

FRACTION OF ELEC ENERGY IN REGION ! FRACTION OF ELEG ENERGY IN REGION | FRAGTION OF ELEC. ENERGY IN REGION 1

FRACTION OF ELEC. ENERGY IN REGION 1

November

TW EVEN
BRANCH |

08

06 1

04

02+

T™M QDD
BRANCH 1

04

0.2

T™M EVEN
BRANCH 2

oo

06

04

02+

T™M 000
BRANCH 2

o or

002 005

Fig. 7—Universal curves showing region 1 electrical energy divided by total electric energy.



FRAGCTION OF MAG. ENERGY IN REGION | FRACTION OF MAG ENERGY IN REGION |

FRACTION OF MAG, ENERGY IN REGION |

FRACTION OF MAG ENERGY IN REGION |

Ammann and Morris: Tunable,

Dielectric-Loaded Microwave Cavities 539
10 10
08 - 8 os-
@
. @
z ]
06 - % 06
. &
w
i TE EVEN & B T™ EVEN
BRANCH SRANCH |
[}
04 - Kats £ 044
N\ 2
N : i
. \\ : s
°
\ 20 Q
o2 - 200 E 02 ]
\ g
4 AN \ = i
0 \ o
. : — T 7 == S —r ¥ -+ ; . ,
005 01 o2 05 1 2 10 20 50 o0 002 005 OI 0.2 05 l
koL
(@) (b}
10 10
1 z |
0.8 & 087
w
[
z i
5
064 &£ OGT
F4
TE 0DO px w ™ 0D0
W BRANCH | g o ’} BRANCH | "
o L= e
04 = o4 Y PEBE B R B
=]
| g
s
024 2 o2
«
[
4 | \
0 T T T o — — T T - ? Y 1
o0 002 005 O} o2 05 | 2 5 10 ool 002 0.05 0! 0.2 o5 ! 4 5 0
l/kcL l/kcL
(c) {d)
10 10
8
08 & 08
uw
x
| =
&
06 5 06
z
TE EVEN w _ ™ ivs);
7 BRANCH N
BRANCH 2 - 2 - " o g . Y
=
04 - 041
o
z i
7 =3
=
Q
02 2 02 |
u
o o \
Tt — — T —T —T T T T T — T T
oo [0 )o¥4 005 O 02 05 1 2 5 10 oo 002 005 Ot 0.2 05 1 2 5 10
l/kcL I/kcL
(e} (f)
10 s 10
A N .
N h 5 —
08 8} o8
2
— E -
>
o
06 & 06 -
Zz
TE ODD W TM ODD
b BRANCH 2 © W BRANCH 2 x
o I IR < = M
= 3
04 ! . 04
[+]
N g N
5
02 n<: 021
w
o] . . T T T T T 1 o v N ,
e} o2 [o R4 1 2 5 0 [eRe]] 002 1 5 0
[eRe]] 002 005 I/kcL {/kc[_

(g)

(h)

Fig. 8—1niversal curves showing region 1 magnetic energy divided by total magnetic energy.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

November

I
SINGLE-ENDED CAVITY ’

~

DOUBLE ~ENDED  CAVITY

or o2 os 10 2 5 ] 20
to}

1)

K=

100

TE o)
SINGLE-ENDED CAVITY

o
DOUBLE -ENDED CavITY

o024
R ] o I ]
] o2 as To H 5 o 20 50 100 o1 o2 os To 2 5 1) 2 S0 100
o/ D/L
{c) (d)
5~ 5
™ 010 ™ 010
SINGLE-ENDED CAVITY DOUBLE ~ENDED CAVITY
24 2
2| - b
< F|<
105 pleg
03] 03
rtmse Treel
TN s
o2 B, 024 P
ROAN
L AN AN
. T — oL”F,i,_./f- N — |
o1 o2 os To 2 H © EY 50 100 or oz 05 o 2 5 o 20 50 106
o/’ o/L
(e) [£3]
10 — — “‘ 10 =
5 s

™ ol $

SINGLE ~ENDED CAVITY

o ey 1 -7 T
ol oz o5 o z 5 o 20 50 100 ol

(g

ol
DOUBLE-ENDED CAVITY

Fig. 9—Q of circular cylindrical cavity due to wall losses.

n



1963

08
TE 1l MODE
g
¥° 06_
~N
T 1
x°
5 04 .
_‘O
024 200
o
T Al T T T T
0! 02 05 | 2 5 10 20 40
D/
@ -
10
J =100
o
TM 110 MODE
i
[
xc G T
=
S B
:O
v
5 4
I
] |
2
2
04— - " — : I 2
oft. o2z 05 1 2 1 10 20 50 100

D/L
(e)

Ammann and Morris: Tunable, Dielectric-Loaded Microwave

Cavities

10

Y —
0.8 /
TE 0il MODE /
§ 15, 200
.‘o o |
> 6
ON
xC’
:
§ 04 k=18
o 2
= H
A 5
8
02"{ :go
0 —— T T T T [
ol 02 05 ! 2 5 10 20 50 100
D/L ’
(b)
10
—= K= 100
/
g
TM QIO MODBE
g
[
i i*3
i 6 eS|
6]
xO
i
8
2 4
=5 2
1 .
29 4 e
] —+—
. —
2
04 . S——  —
o]} o2 05 i 2 5 10 20 50

{d)

Fig. 10—Tuning range for circular cylindrical cavity.

plungers, one can control the frequencies of two resonant
modes. In a cavity tuned by one plunger, which includes
the single-ended cavity of this paper, one has frequency
control over only one cavity mode at a time. If resonant
mode 4 is tuned to a certain frequency f4, we cannot
in general separately tune another mode B to some f3.
In the double-ended cavity however, the additional
plunger gives one an extra degree of {reedom, enabling
one to control mode A and mode B independently of
one another. Of course, this does not mean that one
plunger tunes mode 4 while the other plunger tunes
mode B; rather, it means that by properly manipulating
both plungers simultaneously any desired combination
of f4 and f can be obtained. Mathematically this can
be seen as follows: suppose that mode 4 is a TE mode,
and that the values of o and 8 for f=f, are given by
oq and B4. Substituting these values into the character-
istic equation obtained by dividing (6a) by (6b), and
performing algebraic manipulations, we obtain for
mode 4

@ tan B4 L tanh «4S: tanh aaSs
as

03
— (tanh aS» + tanh aSs) = Z; tan B4L;
A

for mode B, assuming it is also a TE mode, we obtain

B
i tan BpL tanh opS: tanh apSs
op

— (tanh apS; + tanh apS;) = oz tan BzL.
Bz

Two equations in the two variables .S; and S; are thus
obtained. There will be one value of .S; and one value
of S; which will satisfy the above two equations. Any
combination of 4 and f5 within the tuning range of the
cavity can be obtained by properly positioning the two
plungers.

Control over two resonant frequencies could be useful
in a number of ways. For example, this cavity could be
used in a microwave maser, where resonances are needed
at both the signal and pump frequencies. Another pos-
sible use of this tuning property would be in making two
resonant modes degenerate in {requency, or, conversely,
in removing an unwanted degeneracy. Not only can one
make frequencies degenerate one can also tune this de-
generate frequency.

B. Possible Uses

1) Solid-State Microwave Masers: The cavities de-
scribed in this paper are particularly well suited for use
in solid-state microwave masers. Their properties of
a) frequency tunability while maintaining large filling
factor; b) relatively large unloaded Q’s (compared to
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other possible dielectric-loaded cavities); and c¢) sim-
plicity, make them attractive for this application.

Recently there has been interest in optically-pumped
microwave masers which amplify at microwave fre-
quencies while being pumped at optical frequencies. In
an optically-pumped maser, there must be some open-
ing in the cavity through which the pump light can
enter and then travel through the maser material. This
opening could be provided by removing the plunger of
the single-ended cavity, allowing the light to enter the
open end. Or, one of the plungers of the double-ended
cavity could be removed to allow passage of the pump
light, while the other plunger is used to tune the cavity
resonant frequency.

2) Microwave Paramagnetic Resonance Spectroscopy:
The single- and double-ended cavities may also be useful
tools in microwave EPR spectroscopy. Many of the
same properties which make these cavities useful for
maser applications make them also attractive for spec-
troscopy.

3) Microwave Modulation of Light: Light has been
modulated at microwave frequencies through use of the
electro-optic effect in various materials. In one modula-
tion technique, a microwave structure containing the
electro-optic material is required which a) is resonant at
the microwave modulating frequency, and b) will allow
passage of the light through the material. A structure
that fulfills these requirements is the double-ended cav-
ity with both plungers removed. For this application,
the most important cavity properties are electric filling
factor and unloaded Q.

4) Reducing the Size of Microwave Cavities: 1t is some-
times desirable or necessary to reduce the size of a micro-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

November

wave cavity by loading it with dielectric material. The
single- and double-ended cavities offer a method of ac-
complishing this while retaining frequency tunability.
Through use of the equations and graphs for Qw and
Qpr, one can determine precisely the effect of the di-
electric upon the unloaded Q.

5) Uses of the Cavity Analysis: The equations of this
paper, although derived for the single- and double-ended
cavities, are useful also for other situations. In particu-
lar, they should be useful for analyzing resonances in
waveguide windows. The problem of electrical break-
down in waveguide windows is becoming increasingly
important as the power outputs of microwave tubes are
pushed higher and higher.
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