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Tunable, Dielectric~Loaded Microwave Cavities

Capable of High Q and High Filling Factor*

E. O. AMMANN~, STUDENT MEMBER, IEEE, AND R. J. MORRIS~, MEMBER, IEEE

Summary-Many applications require the presence of a dielec-
tric inside a microwave resonator. This paper presents a new type of
dielectric-loaded cavity and contains a detailed analysis of its prop-
erties. The cavity consists of a waveguide of arbitrary but uniform
cross section, filled with dielectric for part of its length, with movable
shorting plungers in the guide beyond one or both ends of the di-
electric. Such a structure supports resonances at frequencies where

a particular waveguide mode is above cutoff in the dielectric, but
below cutoff outside. These resonances can have high Q’s, especially

when the cavity ends are open. Frequency tuning is possible via the

movable plungers.
The present analysis investigates resonant frequency, tuning

range, and electric and magnetic filling factors. Wall losses are cal-
culated for the particular case of a circular cross section. All results

are plotted as universal design curves. The results indicate that this

configuration is quite versatile and should be useful in numerous

applications, including microwave solid-state masers, microwave

light modulators, and the study of “ghost mode” resonances in

waveguide windows.

I. INTRODUCTION

T
HIS PAPER summarizes a recent study [1] of a

new class of tunable, dielectric-loaded microwave

cavities. Two forms of cavity, shown in Fig. 1, are

treated. In both forms, a piece of homogeneous, iso-

tropic dielectric is placed in a uniform waveguide of

arbitrary cross section with movable shorting plungers

at one or both ends. The dielectric sample is machined

so that: 1) its outer surface closely fits the waveguide

walls, and 2) the two parallel faces of the dielectric are

perpendicular to the waveguide axis. In the single-ended

version, the waveguide is terminated by an electric

short at one of the parallel faces of the dielectric.

Both cavity types support high-Q resonances at fre-

quencies which are below the cutoff frequency of the

unloaded waveguide, but above the cutoff frequency of

the dielectric-loaded waveguide. Fields corresponding to

these resonances have propagating character inside the

dielectric (i.e., oscillatory longitudinal variation), while

decaying outside. If the unloaded section is many decay

constants long, negligible fields exist at the shorting

plunger (which can then be omitted), and a high-Q

resonance is maintained. The transverse field configura-

tions are identical to those of ordinary waveguide modes.
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Frequency tuning is accomplished by moving the

shorting plunger (s). When the unloaded waveguide is

well below cutoff, the resonant fields are primarily con-

fined to the dielectric. In such cases, relatively high un-

loaded Q’s are obtained even if the plunger is of the

noncontacting variety. It is usually best to separate the

plunger from the waveguide wall by thin dielectric

spacers in order to avoid contact losses and consequent

erratic behavior of the Q with plunger motion. Since the

fields in the propagating section are much larger than

those in the cutoff sections, the coupling structure

should be located near the dielectric (see Fig. 1).

Many advantages of these cavities are derived from

the possibility of obtaining three features simultane-

ously in one design: 1) a major fraction of the electric

or magnetic stored energy (or both) can be in the di-

electric (i. e., high filling factors); 2) the resonant fre-

quency can be tuned over a large range, often an octave

or more; and 3) the resonance can possess a high un-

loaded Q. This type of cavity can achieve all three fea-

tures—if properly designed—without significantly com-

promising any of them.

The single-ended cavity was first used by Morris [2]

in an X-band microwave maser. To the authors’ knowl-

edge, the tunable double-ended cavity has not been

used elsewhere. The double-ended cavity with tuning

plungers removed is identical to a dielectric waveguide

window. Resonances in such a structure have been

termed “ghost modes” by Jaynes [3] and have been

analyzed by Jaymes and Ferrer [4], [5]. Their analysis

was motivated by the destructive effects these reso-

nances have upon windows in high-power klystrons.

These cavities appear to be useful both as tunable

and as fixed-frequency microwave resonators. They

appear particularly attractive in the areas of solid-state

microwave masers, paramagnetic resonance spectros-

copy, microwave light modulators, microwave meas-

urements, and as compact—yet tunable—microwave

resonators. Furthermore, the information presented

here has direct application to resonances in waveguide

windows, and may be especially useful in the develop-

ment of very high-power microwave tubes.

This paper contains a general analysis of the dielec-

tric-loaded cavity for arbitrary waveguide cross sec-

tions. Transcendental equations are obtained, whose

solutions (found on a digital computer) give the cavity

resonant frequencies. Calculations are made of the cav-

ity tuning range, and of the electric and magnetic filling

factors. For the particular case of a circular cross sec-
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Fig. l-–Tunable, dielectric-loaded microwave cavities.

tion, unloaded @ due to wall losses is calculated for sev-

eral low order modes. All data is presented in the form

of graphs for easy use in cavity design. The information

in this paper, plus considerable additional information,

is available in a report [1) by the authors,

II. DERIVATION OF GENERAL CAVITY EQU,iTIONS

In this section we derive various quantities for the

double- and single-ended cavities of Figs. 2 and 3. The

analyses assume that the waveguide forming the cavity

is a uniform, lossless cylinder of arbitrary cross section.

All cavity regions are assumed to be filled with honlo-

geneous, isotropic dielectric, the dielectrics in regions 2

and 3 being identical. The waveguide modes under con-

sideration are assumed to be propagating in region 1

while being cut off in regions 2 and 3. The relative dielec-

tric constant c,Z of the cutoff regions is less than c,l of

region 1, such that c,l/c,z = K, where h- >1. Regions 2

and 3 will often contain only air, in which case K“ = c,l.

A. Double-ended Cavity

Consider propagation of TE waves in the configura-

tion of Fig. 2. In terms of transverse and longitudinal

components of a particular waveguide mode, the general

field quantities for a TE traveling wave are related

by [6]

H, == T + VCH, (la)
c

Et= T7~(a, xH,). (lb)
Y

The subscripts t and z denote transverse and longitud-

inal components respectively. Et and Ht are two-dimen-

sional vectors in the transverse plane, and the operator

V, is a transverse two-dimensional gradient. Other quan-

tities are related thus:

k.z = ys + q.koz, where koa = tJ2p OC0.

~s3TTs21

F+
1

7/,;>/1,,;:
e=6r2.so ;6.6,, <0 , c=.z~~e~

/// /,,,,,
,/, /,/,,/ =~
,, /,1 ,//

(3) //,,(,1) ,/, (2)
,,

1

Lz=+ ~~oz=z

WAVEGUIDE OF ARBITRARY
CROSS SECTION

Fig. 2—Double-ended cavity contigura.tion.
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Fig. 3—Single-ended cavity configuration.

The parameter k.= 27i-/A., where & is the cutoff wave-

length for the particular waveguide mode; ~. is deter-

mined only by the cross-sectional geometry and by the

order of transverse mode variation. The propagation

constant is -y= a +j@, and all fields are ~assumed to vary

with z. as exp (@t+ yz) so that the upper and lower signs

in (1) are for forward and backward waves, respectively.

In a lossless waveguide, ~ is either purely real or purely

imaginary, depending on whether the guide is below or

above cutoff. For the three regions in Fig, 2, we have

Region 1:

Y = jfl = jticrlko’ – kci (2a)

Region 2 and 3:

~ = a = ~k,2 – qkoz. (2b)

For a single TE waveguide mode, H. can be shown to

have the following form,

Region 1:

H. = T(*, y) [G sin ~z + H cos 13zj (3a)

Region 2:

H, = CZT(X, y) sinh a[z – (L/2 + s,)] (3b)

Region 3:

H, = Cal”(z, y) sinh a[s + (L/2 + Ss)]. (3C)

The quantity T(x, y) is a two-dimensional scalar func-

tion that gives the transverse dependence of Hz in terms

of arbitrary transverse coordinates. T(x, y) must satisfy

the side-wall boundary conditions imposed by the cav-

ity. The arbitrary constants G and H give a measure of

the oddness and evenness of H, with respect to the

plane z = O since they multiply the sin &z and cos &

terms of (3a). The expressions in (3) are legitimate solu-

tions since they include forward and backward waves

and are as arbitrary as possible, subject to the boundary

conditions~, = O at z = (L/2 +SZ) and at z = – (~/2 -1-~3).
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From (1) we have

Et =

which means that by
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(4)

conducting

shorts, we also do the same for Et. Substituting forward-

and backward-wave terms of (3) into (la), we obtain

for H,,

Region 1:

H, = ~ V,T(X, y) [G cos ~z – H sin Pz]
c

Region 2:

H, = : VtT(x, y)c, cosh a[Z – (L/2 + Sz)]
c

Region 3:

H, = f; V,T(X, Y)C, cosh a [Z+ (J72 + ~:)]
c

(5a)

(5b)

(5c)

We must match field expressions at the dielectric

interfaces, z = + L/2. Because of (4), it is sufficient to

match Hz and Hi, since matching HZ automatically

matches Et. By matching Hz and Hi at z = i- L/2, we

can eliminate the arbitrary constants Cz and C3 to

eventually obtain

( )
G a tan $ + b tanh CYS2

(
@L

)
= H ,8tan7tanhaSz – a

(
G a tan ~e + ,6 tanh c&3

)

( flL
—

)
––H ,8tan7tanhaSz-a .

(6a)

(6b)

The general characteristic equation which determines

the resonant value of u for Sz # S3 is obtained by divid-

ing (6a) by (6 b).

For the case of equal plunger positions (S, = S, = S),

(6) is in the form

G~(~) = Hg(ti)

Gf(co) = – Hg(~) .

Here the cavity resonant frequency u (contained in a

and @, is the unknown; it must have a value such that

(6) is satisfied. The only consistent solutions are

G=O, g(o) = o,

TE EVEN modes: ,8 tan $ = a coth aS, (7a)

and

H=O, f(a) = o,

TE ODD modes: a tan ~ = – B tanh CXS. (7b)

The designations EVEN and ODD refer to the sym-

metry of H, with respect to the plane z = O.

For the case of TM waves, a similar analysis leads to

expressions comparable to (6)

(

@L
G’ /3 + aK tan ~ tanh CXSZ

)

(8a)( @L
= H’ p tan ~– – aK tanh aSZ

)

(

IIL
G’ ,8 + CYKtan ~ tanh CYS3

)

( )
z –H’ @tan~–aKtanhaS3 . (8b)

The general TM characteristic equation which deter-

mines u is obtained by dividing (8a) by (~b). When

Sz = Ss = S, (8) gives the following characteristic equa-

tions:

TM EVEN modes: ,B tan ~ = A-a tanh aS (9a)

TM ODD modes: Ka tan ~ = – ,8 coth ci$. (9b)

When both plungers are removed, S= ~, and, conse-

quently, tanh CYS= coth iYS = 1. Then the TE and TNI

characteristic equations are (7) and (9) with tanh CIS

and coth d replaced by unity.

B. Single-ended Cavity

The single-ended cavity (Fig. 3) is a special case of the

double-ended cavity, being obtained from it by insert-

ing a conducting plane at z = O. An analysis similar to

that just outlined could be performed to obtain char-

acteristic equations for the single-ended cavity. This can

be avoided, however, if we notice that the double-

ended cavity fields corresponding to TE ODD and TM

EVEN modes also satisfy the boundary conditions for

a single-ended cavity. Thus we may use these double-

ended cavity results for the single-ended cavity by re-

placing L/2 by L’.

The characteristic equations for the single-ended cav-

ity are

TE Waves: CYtan ,L3L’ = – 13tanh aS (lOa)

TM Waves: ,/3 tan pL’ = Ka tanh aS. (lOb)



1963 Ammann and Morris: Tunable, Dielectric-Loaded Microwave Cavifies 531

For the plunger removed, S= m , and the characteristic

equations are (1 O) with tanh aS replaced by unity. In

all of the characteristic equations, the unknown quan-

tity k the cavity resonant frequency u which satisfies

the equations for particular values of the parameters

K, k,, S, and L (or L’). The exact solutions for OJ,which

are later presented in graphical form, were obtained on

a digital computer. I-Iowever, the approximate behavior

of the solution can readily be seen from the graphical

method presented in Fig. 4. This figure illustrates solu-

tion of the single-ended cavity characteristic equation

for both TE and Tlkl waves. We have drawn plots of

the left- and right-hand sides of (10). The resonant fre-

quencies are given by the intersections of the two curves.

The right-hand side of (10) is shown as a family of curves

corresponding to different values of the plunger position

S; the left-hand side is a somewhat modified tangent

function. It can be seen that as the plunger position is

moved from S = O to a very large value, the resonant

jrequency of a TE mode tunes down, whe~eas the Yesonant

frequency of a TM mode tz~nes l[p. The condition S= O

corresponds to the conventional propagating, dielectric-

filled cavity. The first branch in the ThI case corre-

sponds, if we take S= O, to conventional TIVIUVO modes,

the second branch to Thfu,,l modes, etc. The lowest fre-

quency solution in the TE case corresponds to TE,,.l

modes. Note that since TE modes tune down in fre-

quency and TN! modes tune up as S is increased, there

is the possibility of a given TE mode being crossed as it

tunes down by TM modes which are tuning up. The

double-ended characteristic equations can be shown to

give tuning in a silmilar manner.

K-—

0
sS=o

TM WAVES

v LEFT-HAND SIDE OF EQ. (lOb)

1’
I &+— T E WAVES

RIGHT-HAND SIDE OF EQ. (104

Fig. 4—Graphical technique for solving the characteristic
equations (1 O) of the single-ended cavity.

C. Dielectric Losses

We here consider dielectric losses in a cavity of arbi-

trary cross section, and account for them by a quantity

QDL,

QDL = –
w(Total Energy Stored in Cavity)

— . (11)
(Total Power Dissipated in all Dielectrics)

Consider the configuration of Fig. 2 with both plungers

removed, and assume that region 1 is filled with a dielec-

tric of permittivity e,lcO and uniform conductivity a],

while regions 2 and 3 are both filled with a material

described by C,zco and ISZ. The following can then be

shown:

AU,+ ~ (u, + u,)
1 LIJcrlefj O.)E,zeo

QDL = UT – ‘

where UI, Uz, and US are the electric energies stored in

regions 1, 2, and 3, and UT= UIi- UZ+ U~. We recognize

crJw GIeo and uJae,zeO as being the loss tangents, tan til

and tan &, of the two dielectric materials. We therefore

have

The ratio UJ UT k the ratio of electric energy in region

1 to the total electric energy. Plots for this ratio are given

in Fig. 7.

II 1. C] RCU1..4R CROSS -SECTIONAL. CJW’ITITI~S

A case of considerable interest is a cavity with circular

cross section. In their report [1], the authors have pre-

sented complete expressions for the field:$ in double- and

single-ended circular cavities with plungers removed.

Also presented there are expressions for the unloaded Q

due to wall losses, which are given be] OW.

A. Wall Losses

The unloaded Q due to losses in the cavity walls—

denoted by Qm~ here—was calculatec~ for double- and

single-ended cavities of circular cross section, assuming

that the plungers were removed. The results of this sec-

tion can be used in conjunction with thclse for dielectric

losses, of Section II-C, to obtain an exact value for the

net unloaded Q,

l/Q = l/QTL + l/QDL,. (13)

The definition of Q WL is

QTKL =
uO(Total Energy Stored in Cavity)

Total Power Dissipated in Cavity Walls
. (14)

Using the field equations presented in the report [1],

the total stored energy and dissipated power were found

by performing appropriate integrations over the cavity

volume and surfaces. A normalized form [7] of QWL
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was used, namely QWL8/Al. The 8 refers to skin depth,

while Al is wavelength in the dielectric of region 1.

For the double-ended cavity, stored energy is present

in regions 1, 2, and 3, while power is dissipated in the

sidewalls of the same regions. Because both plungers

are removed, there are no end-wall losses. The expres-

sions for QW~~/kl were found to be:

a) TE EVEN modes (TEznl, TEz~3, TEZ~E, . . . )

November

QIVL~ ‘“’m’’-”) (=a3{@J+;’”4 +[3’+’”’4/_=Al
2~nm’K

{[ ‘,~+;’’”’~l+(+)z(:)’(’,~-;’’”’~)+[:(’+c”’@~)l[’+(;)2(:)’l ‘1’)
b) TE ODD modes (TE2m2, TEzm4, TE2m6, . . . )

c) TM EVEN modes (T Mzmo, TNIzm2, TMz~4, . . . )

and TM ODD modes (T M2.,1, TMz~s, TMz~5, . . “)

(17)

For the single-ended cavity, energy is stored in regions

1 and 2. Power dissipation occurs in the sidewalls of re-

gions 1 and 2, and in addition, in the end wall which

bounds region 1. For this reason, unlike other quantities

previously discussed, QvLa/Al expressions for the single-

ended cavity are not derivable from the double-ended

cavity results. Separate expressions were derived and

are giveu below. As before, it is assumed that the tuning

plunger is removed.

a) TE modes

‘r’m’’-’2)(~=$)a{K[2’~’-;’’”2~~’l+[:(1-c0s2~L”llh =
27rYzm’K

{[ 2’J-;’’”2’L’I+(+)’(:) ’[Z’L’++’’”Z’L’]

b) TM modes

+ [ :(1 – CO’2BL’) 1[’+(3’(221+’’’.’(32(’-%)1

[
2k.L’ + $ sin 2DL’ + k (1 + cos 2DL’)

a 1
[2k,L’ + ~ sin 2BL’ + ~ (1 + cos 2@L’) + 2r1m

0! 1

(18)

(19)

In the above equations, rl~ is the mth zero of ~l(x),

and rim,’ is the mth zero of J1’ (at). In the following section,

graphs are plotted showing Q~L8/Al as a function of the

diameter to length ratio, D/L, for the double-ended

cavity, and as a function of D/L’ for the single-ended

cavity.
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TABLE I

EQUIVALENCE BETWEEN GRAPH LABELS AND CAVITY M mm

TE EVEN. branch 1
TM EVEN: branch 1
TE ODD, branch 1
ThI ODD, branch 1
‘~E EVEN, branch 2
ThI EVEN. branch ‘2
TE ODD, branch 2
TM ODD, branch 2

Corresponding
&lode in

Double-Ended
Cavity

COrfl:~;~ing

Single-Ended
Cavity

TIWU,O

TEw

TM.,,
‘1’Ew,

TABLE II

Im’rRucnoms FOR USING GRAPHS TO DET~RMINE PROPERTIES OF SINGLL+ENDED AND DOUBLE-ENDED CAVITIES

Figure Numbers

5(a), 5(d), 5(e), 5(h), 6(a), 6(d), 6(e), 6(h), 7(a), 7(d), 7(e), 7(h), 8(a), 8(d),
8(e), 8(h), 9(b), 9(d), 9(f), 9(h), 10(a), 10(b)

5(b), 5(c), 5(f), 5(g), 6(b), 6(c), 6(f), 6(g), 7(b), 7(c), 7(f), 7(g), 8(b), 8(c),
8(f), 8(g)

9(a), 9(c), 9(e), 9(g)

1O(C), 10(d)

IV. INTERPRETATION AND DISCUSSION OF GRAPHS

Much of the cavity information is contained in the

graphs presented in this section. These graphs are solu-

tions to and plots of the equations presented earlier;

they show the following quantities:

1) plunger-out resonant frequency vs l/k,L

2) cavity tuning range vs l/k,L

3) electric filling factor vs l/kCL

4) magnetic filling factor vs l/kCL

5) Qm.L6/Al vs D/L

6) cavity tuning range vs D/L.

The graphs which were plotted vs l/k,L apply to a cav-

ity of arbitrar~- cross section, while the graphs plotted vs

D/L are for a cavity of circular cross section. Each

graph contains several curves, with each curve corre-

sponding to a different value of the parameter K.

So that a great variety of data could be presented in

the space available, the graphs are shown on a small

scale. However, in the authors’ report [1 ], the graphs

presented here, and others as well, are displayed in a

scale large enough that data can be read from them with

two- and three-figure accuracy.

.1. Use of the Grapks

As seen in Section II, equations for the single-ended

cavity are easily obtained from double-ended equations.

Correspondingly, one set of graphs suffices for both the

single- and double-ended cases. The sole exception to this

is in the calculation and plotting of QTFL6/Al, where

separate results are obtained for the two cases.

533

Use of the Graph for
—

Double-Ended Ca\-ity

Use directly

Use directly

Use directly

Single-Encled Cavity

Change label of abscissa to l/2k.L’

Use directly

Change label of abscissa to D/2L’

We now state how the graphs may be used for single-

and double-ended cavitities. The equivalence between

the graph label and the corresponding mode in a single-

or double-ended cavity is shown in Table I.

Table II states how the graphs may be used either for

single- or double-ended cavities.

B. Discmsion of Graphical Resldts

1) Plunger-Otlt Resonant Frequency: Fig. 5 contains

graphs showing normalized plunger-out resonant fre-

quency vs l/k,L. We note the following: for small values

of l/k,L, the value of ~e,zkn( ~ ) I/kC is I/<K. As

l/k,L is increased, the value of <e,ZkO( cc)/kc increases

monotonically, finally reaching a value of unity for a

sufficiently large I/kCL. This value of l.jkLL for which

<~k~( ~ )/k. = 1 is the point where regions 2 and 3

start to propagate. It is called the critical value here,

and depends upon the particular resonant mode in ques-

tion. The critical value of l/kCL is easily found from the

plunger-out characteristic equations, and is listed in

Table 11 I for various modes.

For values of l/k,L greater than the critical value,

regions 2 and 3 will be propagating instead of cut off, and

the determinantal equations are no longer applicable.

The graphs presented in this paper show results only

for values of l/k,L which are less than the critical value,

since the situation of interest here occurs only when

regions 2 and 3 are cut off.

1 k,( cz) is shorthand notation for kO(.SZ= S? = cc). Similarly, kO(0)
is shorthand notation for ko(.$ = .SS= O).
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Fig. .5-Universal curves for cavitv resonant frequency with plungers removed.
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TABLE III

VALUIIS OF 1/kcL AT WHICH l& GIONS 2 AND 3 f3ECOME PROPAGATING

critical Value of 1/kCL Mode

“lE EVEN, branch 1

TM EVEN, branch 1

TE ODD, branch 1

TM ODD, branch 1

TE E\’EN, branch 2

TNI EVEN, branch 2

TE ODD, branch 2

TM ODD, branch 2
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2) Cavity Tllning Range: The graphs of Fig. 6 show

the tuning range which k obtained when plungers are

moved from completely in to completely out. For TE

modes, [k[l(O) — ko( cc ) ]/kO(O) is plotted vs l/k.L, while

for TM modes, [kO(CC ) –ko(0) ]/k,(0) is plotted vs

I/kGL.

Several interesting results can be seen from Fig. 6.

For all TE modes, the tuning range increases with in-

creasing l/kJ, reaching its maximum value at the criti-

cal value. This maximum possible value of [ko(0)

– k“( ~ ) ]/kO(O) is shown in Table IV.

For TM modes, the situation is considerably differ-

ent. The per cent tuning range increases monotonically

with increasing l/k.L for Thf EVEN, branch 1 modes,

but for all other TM modes, it peaks at some value of

l/kcL which is less than the critical value, and then

fails to zero at the critical value. The maxim urn possible

value of [ko( ~ ) — ko(0) ]/k O(O) for TM EVEN branch 1

modes is (<z — 1). The maximum value for other TM

modes is very difficult to calculate and was not found.

Finally we note that, for a given value of I/kCL, the

tuning range of TE modes dec~eases while the tuning

range of TM modes inc~eases as h“ is increased.

3) Fraction of Magnetic and Electric Sto~ed Ene~gy in

Region 1: Figs. 7 and 8 (pp. S38–539) show, respectively,

the fraction of the total stored electric and magnetic

energies contained in region 1. These values were cal-

culated by obtaining general field expressions for a

cavity of arbitrary cross section and calculating stored

energy in the various regions. The applicable equations

are given in [1].

From Figs. 7 and 8 it is seen that is l/k,L increases,

the electric and magnetic energies stored in region 1 de-

crease. This result we expect, for as I/kCL. is increased,

regions 2 and 3 are less strongly cut off, allowing the

cavity fields to extend farther into these regions,

An interesting effect concerning the electric and mag-

netic stored energies should be noted. For a given l/kLL

and K“, the stored electric energy in region 1 will not

equal the stored magnetic energy in region 1. This ef -

feet is explainable in the following manner. The total

stored magnetic and electric energies in the cavity must,

of course, be equal at resonance. But in each of the cut-

off regions the stored electric and magnetic energies are

not equal because a waveguide, which is below cutoff,

has unequal electric and magnetic stored energies [8].

As a result, the electric and magnetic stored energies in

region 1 are also unequal, the inequality being most pro-

nounced when regions 2 and 3 are far below cutoff. For

TE modes, there is more electric than magnetic stored

energy in region 1, while the reverse is true for TM

modes.

4) Q 17VLof Circdar-Cylind~ical Cavity: The graphs of

Fig. 9 show QWL8/hl plotted as a functicm of 12/L (and

D/L’) for cavities of circular cross section. These

graphs are plots of (15)–(1 9). Also plotted on each

graph is a curve labeled “conventional cavity” which

shows QWL8/hl for the dielectric-filled cavity formed by

entirely enclosing region 1 with conducting surfaces. For

TIM modes in both the single- and double-ended cases, it

can be shown that QwL6/Al begins at a value of Tz~/~~

at D/L= O, and reaches a value of rz~v’X/2r at the

critical value of D/L. For TE modes, Qw~8/kl goes from

1 )/2~~2~’ at D/L=O to a value ofa value of (7L~’2— z

(T117”2– 12) <7?/27rYt%’ at the critical value of D/L.

.5) Tuning Range of Circldar Cylindrical Cavity: The

graphs of Fig. 10 show cavity tuning range as a function

of D/L for various resonant modes in a cavity of circular

cross section. These graphs are similar tcl those of Fig. 6,

except that the abscissa l/k,L has been converted to

D/L, and each graph corresponds to a particular mode,

V. ADVANTAGES AND USES OF THESE CAVITIES

The cavity designs described here are of potential

interest in many situations which require a dielectric-

loaded microwave cavity. We shall discuss some of the

advantages of these cavities over more conventional de-

signs, and include several possible applications.

A. .4dvankages

1) F~eql~ency TL~nability while Maintaining a Large

Filling Factor: It is often desirable to completely (or

nearly) fill a cavity with dielectric material. The designs

of this paper provide a method of “filling” a cavity with

dielectric, and yet allowing its frequency to be tuned.

We define magnetic filling factor here as the ratio of the

magnetic stored energy in region 1 to the total mag-

netic stored energy in the cavity, and electric $Jling

jactor as the ratio of the electric stored energy in region

1 to the total electric stored energy. The electric and

magnetic filling factors will vary as the cavity frequency

is tuned, having their maximum values of unity when

both tuning plungers are all the way in, and having their

minimum values (given by Figs. 7 and 8) when both



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES November

I ,0

08

0.6

04

0.2

0
01 02 05 10 2 5 10 20

[al

05-

04

0,1

50 I
l/kCL

001 002 0.05 0, I 02 05 1 2 5 10
l/kCL

(c)

,, EVEN
,,,”.” 2

0“ 01 002 005 0,1 0.2 05 I 2 5
l/kCL

(e)

“1 Y

005

I N

001 002 005 0.1 02 05 I 2 5
l/kcL

8

6

4

L

2

0
“0’01 002 005 0) 02 05 I 2 5 10

l/kCL
(b)

001 0.02 0.05 0,1 02 05 I 2 5 10
l/kCL

(d)

05
I

Ill

I
-d

001 002 005 0,1 02 05 I 2 5 [0
I /kCL

(f)

05

,. 0,0
8RA” C” 2

001 002 005 01 02 05 I 2 5
l/kCL

(h)(g)

Fig. 6—Universal curves for cavity tuning range.



7963 Ammann and Morris: Tunable, Dielectric-Loaded Microwave Cavities

TABLE IV

MAXIMUM POSSIBLE VALUE OF TUNING
RANGE FOR TE hloms

Maximum possible value of

[k,(o) - M~)l/ko(o)

1

d
1 – #T

4
1 – 2 ~h;>

)

plungers are removed. If a large filling factor is wanted,

its minimum value should be kept as large as possible.

The following results are noted from Figs. 6, 7, 8, and

10. If a cavity is designed for a small tuning range (e.g. 1

to 5 per cent), both the magnetic and electric filling

factors will remain large (approximately 0.90 or more)

throughout this range. If a cavity is designed for a

moderate or large tuning range, it is often possible to

keep one of the two filling factors large throughout the

range. As explained in Section IV, the magnetic and

electric filling factors will not, in general, be equal. A

TE mode has a larger electric than magnetic filling

factor, while the reverse is true of a TlhI mode. This

should be an important consideration in choosing a

cavity mode.

2) La~ge Frequency Tuning with Moderate Plungev

Displacements: It is occasionally desirable to have a

microwave cavity which is tunable over large (octave or

more) frequency ranges. Large tuning ranges are pos-

sible using several conventional cavity designs, but

these designs are often limited in their usefulness due

to the large plunger displacements required. The designs

of this paper offer a method of obtaining large frequency

tuning ranges with moderate plunger displacements.

Largest tuning ranges are obtained by using TE EVEN,

branch 1, or TM EVEN, branch 1 modes, and by choos-

ing a large value of l/k,L( > 1). The length of plunger

motion required will depend upon the value of a, the

plunger-out propagation constant, which is given by

(2 b). Plunger displacements of S/a for each of the tun-

ing plungers should be adequate for complete tuning,

since at this distance the cavity fields have fallen off to

(1/e)5 of their value at the dielectric boundary.

3) TE and TM Modes Tune in Opposite Directions:

One of the interesting results concerning the cavities of

this paper is that TE and T1’vl modes tune in opposite

directions. As a plunger is pulled out, TE modes tune

down in frequency while TM modes tune up. This

property is useful in several ways.

It can be used as an aid in identifying resonant modes.

The direction that a mode tunes can be used to deter-

mine whether it is TE or TM, and the amount that it

tunes (used in connection with Figs. 6 or 10) can be

used to determine k,. The reader should be cautioned

Mode

TE EVEN, branch 1

TE ODD, branch 1

TE EVEN, branch 2

TE ODD, branch 2

537

that there may also be modes present which are propa-

gating in regions 2 and 3 as well as in region 1; these

modes will tune down in frequency when a plunger is

pulled out, but will not approach a limiting frequency as

the plungers are removed to infinity. A second method of

determining the identity of a mode is to trace its field

pattern within the cavity. By removirug the plungers,

one has complete access to the fields in regions 2 and 3.

tTsing standard techniques [9], one can il”lSfXt perturbing

objects into these regions and determine the strength

and direction of the field components.

The tuning properties of TE and TM modes are also

useful for separating the TEO1l and TIJl Ill modes in a

circular-cylindrical cavity. ln a conventional circular

cavity, as well as a double-ended circular cavity with

both plungers pushed entirely in, the TEo1l and TMIH

resonant frequencies are degenerate. If one wishes to use

the TE,,ll mode, some means must be provided for their

separation. This separation is obtained by pulling out the

plungers of the double-ended cavity, for the TMIII mode

tunes up while the TEo1l mode tunes down. If one needs

only a fixed-tuned cavity, the plungers can be pulled out

far enough to provide adequate separation of the two

modes and then locked in position.

4) Relatively Low Cavity Losses: The cavities de-

scribed here appear to be capable of quite good unloaded

Q’s. The two sources of loss are dielectric losses and wall

losses. l_Tsing these cavities, the designer has control over

the electric filling factor (see Fig. 7), and therefore has

control over the dielectric losses. Wall 1osses are shown

by the graphs of Fig. 9, where the solid curves give the

plunger-out value of Q~r~ti/hl while the dotted curves

(labeled conventional cavity) give the plunger-in value

of QTV~6/~1. For plunger positions between these two

extremes, Qw~~/Xl will fall somewhere lbetween the two

curves. Notice that in all cases except [am- TEIN modes,

the double- and single-ended cavities have a higher

QvL8/A, than a conventional dielectric-filled cavity.

This is because the cavity fields have decayed some-

what before they reach an end wall, resulting k reduced

end wall losses.

.5) Double-ended Cavity A 11OWSSimultaneous Cont~ol

ovev TWO Resonant Freqllencies: One of the advantages

of the double-ended cavity is that by the use of its two
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plungers, one can control the frequencies of two resonant

modes. In a cavity tuned by one plunger, which includes

the single-ended cavity of this paper, one has frequency

control over only one cavity mode at a time. If resonant

mode A is tuned to a“ certain frequency fA, we cannot

in general separately tune another mode B to some ,~B.

In the double-ended cavity however, the additional

plunger gives one an extra degree of freedom, enabling

one to control mode A and mode B independently of

one another. Of course, this does not mean that one

plunger tunes mode A while the other plunger tunes

mode B; rather, it means that by properly manipulating

both plungers simultaneously any desired combination

of !~ and j’B can be obtained. Mathematically this can

be seen as follows: suppose that mode A is a TE mode,

and that the values of a and P for f=.f.i are given by
~A and ~A. Substituting these values into the character-

istic equation obtained by dividing (6a) by (6 b), and

performing algebraic manipulations, we obtain for

mode A

PA— tan flAL tanh a.LSZ tanh C%4S3

~A

– (tanh CIAS2 + tanh aASS) = ~ tan (?.L;

for mode B, assuming it is also a TE mode, we obtain

(b)
O/L

o/L
(d)

Fig. 10—Tnning range for circular cylindrical cavity.

6B
— tan @BL tanh aB5’z tanh ~J’s3

~B

– (tanh aBS2 + tanh CZBS3) = ~ tan ~BL.

Two equations in the two variables Sz and Sz are thus

obtained. There will be one value of Sz and one value

of S3 which will satisfy the above two equations. Any

combination of j~ and ~B within the tuning range of the

cavity can be obtained by properly positioning the two

plungers.

Control over two resonant frequencies could be useful

in a number of ways. For example, this cavity could be

used in a microwave maser, where resonances are needed

at both the signal and pump frequencies. Another pos-

sible use of this tuning property would be in making two

resonant modes degenerate in frequency, or, conversely,

in removing an unwanted degeneracy. Not only can one

make frequencies degenerate one can also tune this de-

generate frequency.

B. Possible Uses

1) So[id-State Microwave Maseys: The cavities de-

scribed in this paper are particularly well suited for use

in solid-state microwave masers. Their properties of

a) frequency tunability while maintaining large filling

factor; b) relatively large unloaded Q’s (compared to
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other possible dielectric-loaded cavities) ; and c) sim-

plicity, make them attractive for this application.

Recently there has been interest in optically-pumped

microwave masers which amplify at microwave fre-

quencies while being pumped at optical frequencies. In

an optically-pumped maser, there must be some open-

ing in the cavity through which the pump light can

enter and then travel through the maser material. This

opening could be provided by removing the plunger of

the single-ended cavity, allowing the light to enter the

open end. Or, one of the plungers of the double-ended

cavity could be removed to allow passage of the pump

light, while the other plunger is used to tune the cavity

resonant frequency.

2) ibficrowave Paramagnetic Resonance Spectroscopy:

The single- and double-ended cavities may also be useful

tools in microwave EPR spectroscopy. Many of the

same properties which make these cavities useful for

maser applications make them also attractive for spec-

troscopy.

3) -Microwave ikfodulat ion of Light: Light has been

modulated at microwave frequencies through use of the

electro-optic effect in various materials. In one modula-

tion technique, a microwave structure containing the

electro-optic material is required which a) is resonant at

the microwave modulating frequency, and b) will allow

passage of the light through the material. A structure

that fulfills these requirements is the double-ended cav-

ity with both plungers removed. For this application,

the most important cavity properties are electric filling

factor and unloaded Q.

4) Reducing the Size of .iWicrowave Cavities: It is some-

times desirable or necessary to reduce the size of a micro-

wave cavity by loading it with dielectric material. The

single- and double-ended cavities offer a method of ac-

complishing this while retaining frequency tunability.

Through use of the equations and graphs for QWL and

QDL, one can determine precisely the effect of the di-

electric upon the unloaded Q.

5) Uses of the Cavity Analysis: The equations of this

paper, although derived for the single- and double-ended

cavities, are useful also for other situations. In particu-

lar, they should be useful for analyzing resonances in

waveguide windows. The problem of electrical break-

down in waveguide windows is becoming increasingly

important as the power outputs of microwave tubes are

pushed higher and higher.
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